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SUMMARY

Three, very di�erent particle methods, PIC, SPH and vortex-blob methods, are compared. Results on
consistency and stability are collected. A PIC instability, its properties, and its resolution by stability
in the energy norm is discussed at some length. Examples are given of the mutual exchange between
computational �uid dynamics and plasma modelling. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A particle method models a continuum using point-set data. Convolution of the mass-point
data with a particle shape function, S, for example, yields a mass density �

�(x)=
∑
p
mp�(xp) ∗ S (1)

from a discontinuous set of data points. The density has the continuity and di�erentiability
properties of S.

∫
S(x) dx=1, and typically S has bounded support.

The particle-in-cell (PIC) method was invented by Harlow for compressible �ow problems
[1]. It combines particles to follow material motion with a grid to solve the equations of
motion. In PIC, the particle co-ordinates are advanced by an area-weighted mean of the
velocities from neighbouring grid points. The area-weights are computed from the overlap of
a piecewise constant particle shape function

S(0)(x)=

[ 1
h |x|6 h

2

0 |x|¿h
2

]
(2)
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with grid cells. Both the support of S(0) and the grid spacing are equal to h. The overlap area
A of a particle p’s shape function with cell c is given by the convolution of particle and cell
shape functions

A= S(0)(xc) ∗ S(0)(xp) (3)

where xp and xc are the particle and cell centre co-ordinates, respectively. Grid cells exchange
conserved variables, such as mass, in proportion to the number of particles that cross their
common boundaries. The nearest grid point (NGP) function assigns � function particles to
the cells. One computes, for example, the density in cell c from,

�c=
∑
p
mpS(0)(xc − xp) (4)

The advantages of PIC are its ability to model highly distorted �ows and interfaces, especially
hydrodynamically unstable interfaces. The method has had some notable successes, but its low
accuracy and apparent instability in stagnating �ows caused it to become obsolete.
The PIC method was reinvented as the cloud-in-cell (CIC) method for plasma simulation

[2]. The CIC algorithm models the self-consistent motion of charged particles in electric and
magnetic �elds. In contrast to PIC, CIC computes both particle charge contributions to grid
cells and forces acting on particles by area-weighting, i.e. by a convolution of piecewise
constant shape functions. Thus, for example, the charge density in cell c, �qc, is given by an
area-weighted sum of the particle charges, qp,

�qc=
∑
p
qpS(1)(xc − xp); S(1) =

[
1
h

(
1− |x|

h

)
|x|6h

0 |x|¿h

]
(5)

from the recursion relation for b-splines,

S(l+1) = S(l) ∗ S(0) (6)

Equations for the self-consistent electric and magnetic �elds are solved on the grid. CIC
‘clouds’ model collision-less plasmas very well, and such models continue to dominate the
�eld of plasma simulation.
The vortex-in-cell method [3] applies CIC methodology to incompressible, inviscid �ow.

The vortex method tracks the motion of vortex blobs in the �ow they induce. Both parti-
cle vorticity contributions to the grid and particle motion are computed by area-weighting.
However, the apparent di�usion in vortex-in-cell results, and the prospect of applying grid-
free particle vortex methods to singular boundary layers caused Rosenhead’s point vortex
method to be more widely adopted. In the point vortex method, a particle vortex weighted
convolution of �-function particle shape functions with a Green’s function yields the velocity.
The singularity of the Green’s function with point particles, which causes an apparent lack of
convergence [4], lead to the regularization of point vortices as in Equation (1), but typically
using higher order functions

p=2; Sh=
e−r

2=2h2

2�h2

p=4; Sh=
e−r

2=h2 − 1
2 e

−r 2=2h2

�h2
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Proofs of stability and convergence quickly followed, and recipes for particle shape functions
yielding high order accuracy followed [5]. However, accuracy is conditional on adequate
coverage of the domain by particles [6]. In addition, high accuracy integration of the Green’s
function can be sustained only so long as the particles retain some spatial order.
The smoothed particle method (SPH), is a grid-less method for compressible �ow. Hydro-

dynamic forces are short-range and there are constants of the motion to be preserved. In SPH,
the shape function support h de�nes the interaction distance between particles. Conservation
is achieved by carefully preserving the reciprocity of interactions between pairs of particles
[7]. For example, velocity gradients are computed by di�erentiating

�∇ · v=∇ · (�v)− v · ∇� (7)

rather than Equation (1). The result is

∇ · v=
∑

p′(vp′ − vp) · ∇pS(xp − xp′)

�
(8)

A typical shape function for SPH is given by

Sh=
1

�3=2h3

(
5
2

− r2
)
e−r

2=h2 (9)

with
∫
S(r)dr=1 and

∫
r2S(r) dr=0.

Explicit time integration limits the domain of dependence to particles whose support over-
laps, so that individual particle motions are computed within a moving window. The �ow
velocity is not single-valued, in general, but viscous interaction between particles reduces
multistreaming. The form of the derivative implied by this viscosity is used in a particle
exchange method for transport [8].
A hybrid �uid and kinetic plasma simulation algorithm, the implicit moment method, solves

kinetic equations on hydrodynamic time scales [9]. (This is an extremely long time scale for
a plasma, which has many high frequency modes.) One needs only the charge and current
densities to solve Maxwell’s equations, and these are given by the k=0 and k=1 moments of
the velocity distribution of the particles, Mk =

∫
vkf(x; v; t) d3v. Since there are more particles

to move than moment equations to solve, it is less challenging to solve implicitly di�erenced
moment equations self-consistently with Maxwell’s equations. The moment equation

@M (k)

@t
+
@M (k+1)

@x
= kF(x; t)M (k−1) (10)

where F(x; t) is the force, do not form a closed system. However, the pressure, M (2), can
be evaluated from the particles and treated explicitly in time, because the stability constraint
it imposes is on the hydrodynamic time scale. Similar ideas are currently being explored for
�ows in micro-devices, where the Froude number may be O(1) [10].
To complete the circle from Harlow’s PIC through plasma simulation and the implicit

moment method, the �uid-implicit-PIC method (FLIP) can be derived by taking the collisional
limit of the implicit moment equations for neutral particles [11]. The particle shape functions
are de�ned as functions of logical co-ordinates, and the computation cycle is divided into a
Lagrangian phase, during which the logical co-ordinates and the particle weights are constant,
and an ‘Eulerian’ or remap phase, during which the particles are stationary and the grid is
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moved or replaced. Since all data are carried by particles and essentially none by the grid,
the motion of the grid is arbitrary. Implicit in time di�erencing, extends PIC’s applicability
to low-speed �ows, and together with staggered mesh di�erence equations on the mesh, gives
momentum and energy conservation. A variant of FLIP, called the material point method
(MPM), evaluates derivatives analytically [12]. For example the gradient of the density is
computed from Equation (1),

∇�(x)=∑
p

∫
mp�(x′ − xp)∇xS(x − x′) dx′ (11)

2. ON THE STABILITY AND ACCURACY OF PARTICLE METHODS

2.1. Accuracy

A study of the vortex-blob method by Perlman compares theoretical estimates of the
consistency error, which is de�ned as the distance between the exact �ow velocity and the
discrete velocity computed from a distribution of vortex blobs, with the results of numerical
computations [13]. The error estimate is given by

�6C1

(
�
h

)L
h−1−� + C2hp (12)

where � is the separation of particles, h is the support of the particle shape function, L is a
measure of the smoothness of the particle shape function, �¡1, and C1 and C2 depend on
the smoothness of the solution but not on h and �. Perlman’s results suggest that the high
order of accuracy obtained with high order kernels is lost as particles are disordered by the
evolving �ow. However, if each blob always overlaps several others, second order accuracy
persists, in which case, ‘the smoothing error should be larger than the discretization error’
[13, p. 220].
An analysis of the accuracy of the PIC method yields a similar conclusion [14]. With

particle shape function, S(0), the error is bounded by

�6C1

(
�
h

)2
+ C2h2 (13)

where � is the separation of particles, h is the mesh spacing, and C1 and C2 are independent
of � and h, and depend only on the smoothness of the data. In PIC, the ratio, �=h, is the
number of particles per cell.
A convergence analysis for SPH shows that the method is convergent, with convergence

rate �6Ch1=4 [15].
To those familiar with particle methods, these collected accuracy results may seem

unreasonably pessimistic, especially for SPH. Perhaps it is because the analysis emphasizes
approximation error, which is high for particles, and ignore �delity to the dynamical equations,
which can be excellent for particle methods [16].
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2.2. Numerical stability properties of particle methods

The tension instability in SPH is described in Reference [17]. It appears to be due to the
density weighting in Equation (8), and causes the fragmentation of solid objects under tension.
One proposed remedy is an added arti�cial pressure to prevent clumping [18].
Harlow noted the instability in PIC calculations of stagnating �ows, and called it the

ringing instability. An example is shown in Figure 1, where particles from a calculation
of a Kelvin–Helmholtz instability (KHI) are shown. Initially, the particles above the midplane
are moving to the right relative to those below at Mach number equal to 0.1. A small, mode
1 perturbation in the velocity is imposed initially. The plots in Figure 1 are at equal time
intervals. The calculation does not yield the expected growth of the KHI. Rather, it displays
small scale, localized disturbances of the �ow that cause particle clumping and disordering.
One can, and many do, write this o� as the natural result of the di�usiveness of a low-
accuracy method, and the noisiness of PIC methods. In fact, it is a numerical instability due
to aliasing errors, which occur because the grid undersamples particle data [19]. The grid sup-
ports modes with wave numbers k ∈ [−�=�x; �=�x]. However, there are many more particles
than grid points, and particles respond to harmonics of the principal modes, kq=± q�=�x.
False resonances from these harmonics cause exponential growth of a broad range of modes
in subsonic �ow. In supersonic �ow, the instability, which is called the �nite grid instability,
is completely absent. The instability growth can be reduced by using higher order particle
kernels, and eliminated by kernels whose support covers the entire domain, e.g. a Gaussian
kernel.
The results of a linear dispersion analysis of the �nite grid instability are shown in

Figure 2, where the growth rates are clearly largest for low-speed �ow, but are distributed
over all wave numbers. The same KHI problem yields very di�erent results with FLIP,
Figure 3. However, because FLIP uses both higher order particle shape functions and im-
plicit di�erencing in time, the results do not identify unambiguously cause of the di�erences.
For example, while higher order shape functions reduce the growth rate of the FGI, they do
not eliminate it [19]. Furthermore, linear dispersion theory attributes little e�ect to implicit
di�erencing, Figure 2(b).
On the other hand, a comparison of explicit and implicit MPM grain compression

results, where the di�erence equations di�er only in the time-advancement, the results are
dramatically better with implicit di�erencing, compare Figure 4(d) with Figure 4(b) [30].

Figure 1. Particle plots from a PIC calculation of a KHI show evidence of a �nite grid instability.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:693–705
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Figure 2. The growth rates of the �nite grid instability are plotted as a function of Mach number and
wave number. The broadband instability is a feature of low-speed �ow. (a) The growth rate for explicit

di�erencing in time; and (b) the growth rate with implicit di�erencing in time is reduced.

Figure 3. Particle plots from a FLIP calculation of a KHI show no evidence of a �nite grid instability,
and a much stronger physical instability.

The case of a single grain undergoing repeated collisions with a rigid wall reveals growth in
the elastic energy of the grain with an explicit calculation that has no physical cause, and
conservation with an implicit calculation, Figure 5.
Lilly shows that linear and quadratic conserving di�erence schemes eliminate the instabilities

caused by aliasing [20]. (He and Arakawa are said to have claimed ‘that conservation of
[quadratic] quantities in long-term integrations were more important than accurate phase
propagation or prediction of single speci�c events’ [21, p. 565], a view that is not widely
shared at present.) It is said with regard to spectral methods, ‘Because [the] formulation : : :
conserves [energy], we are assured that aliasing instabilities are not present’ [22, p. 120].
Others make a connection between boundedness in the energy norm, and the Lax-Richtmyer
su�cient condition [23].
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(a) (b) (c) (d)

Figure 4. Explicit (a,b), and implicit (c,d) calculations of stress propagation through packed
grains are shown. The explicit calculations exhibit noise contributed by the �nite grid instability.

Figure 5. The elastic energy for a single grain experiencing repeated collisions with
a rigid wall reveal an unphysical growth of the energy with explicit di�erencing that

is absent in the implicit calculations.

When the energy method is applied to the explicit and implicit calculations above, one
�nds that implicit solutions not only conserve energy, but also bound all quadratic quantities.
The time step dependence of the �nite grid instability in explicit calculations, which linear
analysis says should not exist, is explained by the increased accuracy of energy conservation
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with the leapfrog algorithm with decreased time steps. With smaller time steps, increasingly
stringent bounds on quadratic quantities constrains instability growth.

3. PLASMA TURBULENCE AND FLUID INSTABILITY

A much studied plasma equilibrium, the Harris current sheet, is generated by a drifting
Maxwellian particle distribution function with number density variation in z, written for
species s

f0s= n(z)
1

v3s (2�)3=2
· exp

[
−

(
v2x + (vy − us)2 + v2z

)
2v2s

]
(14)

where us, the drift velocity, and vs=
√
kTs=ms, the thermal velocity for species s, are spatially

uniform.
Because the centre of mass velocity is spatially uniform, the Harris equilibrium is

hydrodynamically stable. On the other hand, if vorticity were to replace the magnetic �eld in
the equilibrium above

!x(z)= −!0 tanh(z=L) (15)

there would result a jet

uy(z)= u0
1

cosh2(z=L)
(16)

that is unstable to the KHI for all wavelengths of O(L) or longer.
Simulation of the Harris sheet yields a curious result [24].
Early in the simulations, the well-known lower hybrid drift instability (LHDI) grows. In

Figure 6(a), where a contour plot of Ey at (!cit=7) is drawn, one can see the characteristic

(a) (b) (c)

Figure 6. (a) Contours of Ey at !cit=7 with ui=vi=1, Ti=Te=4, mi=me=180, Ly=L=4 reveal the
growth of the lower hybrid drift instability; (b) contours Bx(y; z) at a much later time (!cit=110)
reveal the growth of a kinking instability; and (c) the shear in the velocity caused by the lower

hybrid drift instability explains the subsequent growth of the KHI.
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‘�shbone’ pattern of the LHDI. The LHDI is driven by gradients of the density on the edge
of the current sheet, as seen in Figure 6(a). Its growth tends to reduce gradients, which causes
a plasma pressure imbalance that is resolved by thinning and intensi�cation of the current.
(Induction sustains the total current �ow.)
Late in the simulations, a long wavelength mode grows after the LHDI saturates,

Figure 6(b), which looks remarkably like a KHI. Shown is a contour plot of Bx at !cit=110.
The closely spaced contours lie in the current sheet, and their motion re�ects the bulk
plasma motion.
The growth of the KHI is explained by changes in the ion density. When the ion density

changes, the ion velocity also changes, Figure 6(c). The plasma physics explanation for this
is that the initial (constant) ion velocity is ‘diamagnetic’,

ui=
B× ∇p
neB2

(17)

With the growth of the LHDI in the �anks of the pro�le, the ion density gradient and ion
velocity decrease below their initial values. Figure 6(c) shows this variation of uy with z.
(The signi�cant changes are on either side of the current sheet. The increased uy near z=± 4
is in a region of very low plasma density, n.)
There is a more intuitive explanation for the development of a macroscopic shear velocity.

The motion of individual ions as they gyrate in a magnetic �eld cancel each other in the
initial equilibrium, but not in the LHDI altered equilibrium. Ions are vortices with �nite
gyroradii. When L is comparable to the ion gyroradius, modi�cations of the ion density cause
modi�cations of the gradient of the vorticity, which induces shear �ow.

4. THE VORTEX METHOD AND MAGNETOHYDRODYNAMICS

Computation of the development of the KHI in a Harris sheet is examined from the point of
view of magnetohydrodynamics (MHD), the non-relativistic, collisional limit of the Maxwell–
Boltzmann system for charged particles.
A formal connection is often noted between the transport equation for vorticity

@!
@t
=∇ × v×! (18)

and Faraday’s law

@B
@t
=∇ × v×B (19)

where v is the �ow velocity, ! is the vorticity, and B is the magnetic induction. They both
describe a vector �eld that is frozen in to a �ow. They di�er, of course, in that v is a function
of ! but not of B [25, p. 102].
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It is nevertheless possible to develop particle methods for MHD [26, 27]. One de�nes B
from point-set data,

B=
∑
p
�pS(xc − xp) (20)

where �p is the particle magnetic moment. One then writes Faraday’s law in terms of the
material derivative,

dB
dt
= − B∇ · v+ vB · ∇+∇ ·Bv (21)

and substitutes Equation (20) into Equation (21) to derive

d�p
dt
=�p · ∇v (22)

(It is assumed that S is a symmetric function of its arguments, and has dimensions V−1.)
A B computed from � is not solenoidal, i.e. ∇ ·B �=0. Since a non-physical force along B

will result from non-solenoidality, the non-solenoidal part of B is removed by projection

B′=B− ∇� (23)

where

∇ · ∇�=∇ ·B (24)

The correction is orthogonal to B′

∫
∇� ·B′ dV =0 (25)

provided either � or n̂ ·B′ = 0 on the boundary of the domain.
For the MHD calculation of the KHI, the mass density is constant, and the temperature

varies as

T (z) = Ts
1

cosh2(z=L)
(26)

The magnetic �eld is in the plane of the calculation (the x − z plane), and varies with z as
Bx(z) = −B0 tanh(z=L) (27)

which results in a thin current sheet with current density Jy = B0=(L cosh
2(z=L)). There is an

initial �ow with positive x-velocity above the current sheet, and negative x-velocity below.
The �ow is subsonic, M = 0:5 and super-Alfvenic, A = 10. A strong instability develops.
In general, an adaptive grid can increase the accuracy of a numerical calculation by equidis-

tributing the error. For di�erence methods, equidistributing the local truncation error increases
accuracy signi�cantly [28]. One writes the error measure in the form

e(x)=w(x)gk (28)
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Figure 7. The reconnection caused by a KHI is computed with a PIC MHD model on an adaptive
grid. A 60× 30 adaptive grid and magnetic �eld lines are shown (a), and the Ohmic heating that
results with various grids is shown (b). The concentration of grid points re�ects the weight
function, which depends on the current density, J . Convergence is achieved with much less e�ort
with an adaptive grid, circles, than with a uniform grid, squares. The solution on a 60× 30

adaptive grid is as accurate as a 120× 120 uniform grid.

where g is the determinant of the metric tensor gij of the transformation from physical to
logical co-ordinates, in the variational formulation

I =
∫
w∇�	 · ∇�	 dV (29)

The solution of this minimization problem yields the equidistribution property expressed in
the following theorem.

Theorem 1 (Error Equidistribution)
In an optimal grid, de�ned as a grid that minimizes the local truncation error according to
the minimization principle, the product of the local truncation error in any cell i by the cell
volume Vi (given by the Jacobian J =

√
g) is constant.

eiVi = const (30)

For particle methods, there is not only truncation error. There is also consistency error,
Equation (13). Thus, a weight function that controls the number of particles per cell, can
be as important as truncation error control. In Figure 7 (left) is an overlay of an adaptive
computation mesh on a magnetic �eld line plot. The adaptive mesh is the solution of the
generator equations described in Reference [29] with weight function NJ . Here N is the
number of particles per cell, and is included in the weight to minimize the consistency error,
Equation (13). The heating rates, which are dependent upon resolving the singular currents
that develop as a result of the �ow, are plotted as a percentage of the correct result in
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Figure 7(b). The points are labelled with the number of grid points used, with circles (left
curve) denoting results with an adaptive mesh, and squares (right) a uniform mesh.
The truncation error, which is neglected by this choice of weight function, can be expressed

as the di�erence between the linear interpolation of the discretized operator applied to the
discretized �eld, and the exact di�erential operator applied to the linear interpolation of the
discretized �eld. It would be straightforward to apply to FLIP, where there the recipe above
corresponds to comparing FLIP and MPM. Recall that MPM evaluates derivatives analytically
Equation (11), and FLIP uses �nite di�erences. Thus, to calculate the truncation error, one
simply compares FLIP and MPM computations of the derivatives, e.g. for the computation of
the current, J

�T = − ∑
p
�p × ∇xS(x − xp) +∇h

x × ∑
p
�pS(x − xp) (31)

5. CONCLUSIONS

A comparison of PIC, SPH, and vortex-blob methods indicates that the consistency error
is dominated by discretization error when initial particle ordering is lost. This error limits
accuracy to second order, but can be reduced by increasing the shape function smoothing
length at the cost of increased smoothing error. However, the computation of a magnetized,
Kelvin–Helmholtz instability gives evidence that control of the local smoothing length and the
number of overlapping particles can increase accuracy, even when particles are disordered.
Both PIC and SPH exhibit instability, but for di�erent reasons. SPH is apparently unstable

because of the density scaling in the computation of derivatives. PIC is unstable because of the
contribution of aliases. Curiously, PIC shares with spectral methods not only its vulnerability
to aliasing, but also its stability if boundedness of the solutions in the energy norm is achieved.
For PIC, one approach that accomplishes this is implicit di�erencing in time.
An example of a problem on the boundary of �uid and kinetic behaviour illustrates the

potential of particles for related problems in �uid dynamics, such as the computation of �ow at
extremely small dimensions. Other examples of special capabilities, such as interface tracking,
have been successfully exploited.
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